emm

BE INSTITUTO FEDERAL l{l“‘ l{ R ’
BEMW s30 Paulo ‘ j

W@ campus Sao Paulo o , L

IDENTIFICATION OF ELECTROMYOGRAPHIC SIGNALS USING MACHINE LEARNING
TECHNIQUES AND LOW-COST TECHNOLOGIES

IDENTIFICAGAO DE SINAIS ELETROMIOGRAFICOS COM TECNICAS DE APRENDIZADO DE
MAQUINA E TECNOLOGIAS DE BAIXO CUSTO

Jhenifer July Sousa De Almeida

Undergraduate Student in Production Engineering
IFSP/Campus Sio Paulo
jheniferjuly23@gmail.com

Caio Igor Gongalves Chinelato

Ph.D. in Electrical Engineering /POLI-USP
Professor and Researcher at CECS (Center for Engineering, Modeling and Applied Social Sciences)/UFABC
caio.chinelato@ufabc.edu.br; caio.chinelato@gmail.com

ARTIGO INFO. Recebido: 16.04.2025 Aprovado: 02.07.2025 Disponibilizado: 28.08.2025
ABSTRACT
The human-robot interface (HRI) has recently become a widely studied research topic. This topic addresses the
acquisition, processing and interpretation of electrobiological signals from different parts of the human body and
the application of these signals for the control of robotic systems. The HRI is essential for applications involving
people with disabilities, professionals working in hazardous environments, and even robotic surgery. The focus
of this work is the identification of electromyographic (EMG) signals. EMG sensors were placed on specific regions
of a person’s arm, and gesture recognition was performed. Initially, the EMG sensors and microcontroller were
determined using low-cost technologies. Posteriorly, machine learning techniques were applied for gesture
recognition. The main contributions of the work were the use of an EMG sensor commercially available in Brazil
and in several countries, easily accessible and little explored in the literature, besides the use of feature
extraction and machine learning techniques applications from the Matlab software, which are practical and
efficient tools, and also little explored in the literature. The resulting machine learning model was quite accurate
and can be applied in the future for the control of robotic systems.
Keywords: Electromyographic Signals; Gesture Recognition; Machine Learning; Human-Robot Interface.

RESUMO

A interface humano-robé (IHR) é um tdpico de pesquisa muito estudado recentemente. Este tdpico se trata da
aquisicdo, processamento e interpretagdo de sinais eletrobiolégicos provenientes de diferentes partes do corpo
humano e aplicagdo desses sinais para o controle de sistemas robdticos. A IHR torna-se necessaria em aplicagdes
para pessoas com deficiéncias, profissionais que trabalham em ambientes perigosos ou até mesmo na cirurgia
robdtica. O enfoque deste trabalho é a identificacdo de sinais eletromiograficos (EMGs). Sensores EMGs foram
colocados em regides especificas do brago de uma pessoa e a identificacdo gestual foi realizada. Inicialmente,
foram determinados os sensores EMGs e o microcontrolador utilizando tecnologias de baixo custo.
Posteriormente, foram aplicadas técnicas de aprendizado de maquina para identificagdo gestual. As principais
contribuicdes do trabalho foram a utilizagdo de um sensor EMG disponivel comercialmente no Brasil e em
diversos paises, de facil acessibilidade e pouco explorado na literatura, além da utilizagdo dos aplicativos de
extracdo de caracteristicas (features) e técnicas de aprendizado de maquina do software Matlab, que sdo
ferramentas praticas, eficientes, e também pouco exploradas na literatura. O modelo de aprendizado de
magquina obtido foi bastante preciso e pode ser aplicado futuramente para o controle de sistemas robéticos.
Palavras-chave: Sinais Eletromiograficos; Reconhecimento Gestual; Aprendizado de Maquina; Interface
Humano-Robd.
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Introduction

The human-robot interface (HRI) address the acquisition, processing, and interpretation of
electrobiological signals from different parts of the human body and the use of these signals
to control several robotic systems. This interface can be achieved through gesture, visual, or
even speech commands. Several scientific works have recently been published in this field.
Among the main applications, we can highlight assistance to people with disabilities through
prostheses and exoskeletons, professionals working in hazardous environments, rescue
missions, and robotic surgery. Several electrobiological signals can be employed. Some of the
most common are electromyographic (EMG) signals, obtained from muscle activity;
electrooculographic (EOG) signals, obtained from eyes; and electroencephalographic (EEG)
signals, obtained from brain activity (Ferreira et al., 2008). The focus of this work is on EMG
signals.

EMG signals are electrobiological signals produced by the electrical activity of a muscle during
its contraction and can be detected by electrodes or EMG sensors placed on the skin of a
person (Morais et al., 2016). These signals usually require a process of amplification and
filtering before being analyzed. Although muscle activation information can be extracted from
analytical EMG models, these models are highly complex. Therefore, machine learning and
artificial intelligence techniques, or statistical analysis methods, are usually applied to analyze,
decode, and identify these signals. Then, hand gestures, as shown in Figure 1, can be more
easily identified (Godoy et al., 2022b). Several works address the processing and identification
of these hand gestures, as shown in Marcheix et al. (2019), Chen et al. (2021), Fu et al. (2018),
Barsotti et al. (2019), and Godoy et al. (2022b).

Figure 1. Set of typical hand gestures for EMG applications.
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Source: Marcheix et al., (2019).

Several recent works in the literature address the control of robotic systems through EMG
signals. Basically, hand gestures, as shown in Figure 1, are acquired through EMG sensors,
processed and identified by computational algorithms, and robotic systems are controlled
based on these signals. Some works address the control of robotic hands, as shown in Meattini
et al. (2018) and Montoya et al. (2022), and also robotic manipulators, as shown in Liao et al.
(2018) and Godoy et al. (2022a). These applications can be used both to assist people with
disabilities and in robotic teleoperation for industrial, commercial, or medical tasks. Other
studies deal with wheelchair control using EMG signals, as shown in Maeda and Ishibashi
(2017) and Abayasiri et al. (2021). Some studies also explore the control of mobile robots using
EMG signals. The works Bisi et al. (2018) and Luo et al. (2020) demonstrate the control of
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wheeled mobile robots with EMG signals, while Ali et al. (2020) and Jun et al. (2021) show the
control of quadcopters or drones through EMG signals.

Given the relevance and numerous application possibilities, the focus of this work is the
identification of EMG signals. EMG sensors were placed on specific regions of a person’s arm,
and gesture recognition was performed. Initially, the EMG sensors and microcontroller were
determined using low-cost technologies. Posteriorly, machine learning techniques were
applied for gesture recognition. It is important to highlight that low-cost sensors present
additional difficulties, such as lower EMG signal quality and greater susceptibility to noise;
therefore, the application of machine learning techniques is essential for identifying EMG
signals from low-cost sensors.

One of the contributions of this work was the use of an EMG sensor commercially available in
Brazil and several other countries, easily accessible and little explored in the literature. Many
works apply more expensive and less accessible technologies, especially in Brazil, such as Myo
armband, which is no longer commercially available (Marcheix et al., 2019; Jun et al., 2021),
and Myoware 2.0 from Sparkfun Electronics (Myoware, 2025). Other works develop their own
EMG sensor (Yanez et al., 2020), which was not considered a viable or convenient suggestion
for the proposal of this work. Furthermore, the entire process of EMG data sensors acquisition
and processing, feature extraction, and application of machine learning techniques were
performed in the Matlab software. In many studies reported in the literature, Matlab is
primarily used for EMG data sensors acquisition and processing, while feature extraction and
application of machine learning techniques are typically performed using Python. However, in
this work, we apply the Matlab’s feature extraction and machine learning techniques
applications, which are practical and efficient tools, and also little explored in the literature.
The resulting machine learning model was quite accurate and can be applied in the future for
the control of robotic systems. Here it is also important to highlight that another advantage
of using Matlab is the availability of specific tools for working with several robotic systems and
simulators, which facilitates future applications of the obtained machine learning model.

The following sections present the activities realized for the development of the work, the
results, and the conclusions. It is important to emphasize that the focus of the work is gesture
recognition using EMG sensors and machine learning, however, some experimental and
computational options for low-cost robotic systems that can be controlled by the identified
EMG signals will also be discussed, which could generate promising future work.

Electronic Components — EMG Sensors and Microcontroller

The first activity in the methodology of this work was the determination of the electronic
components required to acquire and process the EMG signals. After studying several
commercially available options, the EMG sensor shown in Figure 2 was obtained (Eletrogate,
2025). An Arduino Uno was used for the acquisition and processing of the EMG signals. The
schematic diagram of the connection between the Arduino Uno and the EMG sensor is
presented in Figure 3. The sensor is powered by a 9 V symmetrical power supply and uses
three electrodes to transmit the analog EMG signal. Two electrodes are positioned on the
target muscle, and one electrode is positioned on a stationary region of the body and serves
as a reference. The EMG signal is connected to the Arduino Uno’s analog input. It is important
to highlight that the sensor already includes a signal conditioning circuit that amplifies,
rectifies, and filters the raw EMG signal. Technical details of this sensor are provided in Pololu
(2025).

( )@ CCBY 4.0
DEED
ey REGRASP | ISSN: 2526-1045 v.10 | n.3|2025 ]| p.18-31



4 Almeida & Chinelato

Figure 2. EMG sensor.
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Source: Eletrogate, (2025).

Figure 3. Schematic diagram of the connection between the EMG sensor and the Arduino Uno. In the
experimental tests, a power supply was used instead of batteries, which discharge over time and can cause
inaccuracies in the measurements.

Source: Pololu, (2025).

It is important to highlight that three EMG sensors were applied to achieve more accurate
gesture recognition of the person’s arm. Each sensor was placed in different regions of the
arm. The setup shown in Figure 3 was implemented, and the first tests were performed to
understand the sensor’s operation and to gain familiarity with practical and constructive
details. Posteriorly, a computational algorithm was developed in the Arduino Uno IDE with
C++ language, which employs the serial communication via the USB port to perform sampling
and data acquisition from the EMG sensors through the Arduino Uno’s analog inputs at a
sampling rate of 20 ms.

The data are displayed on the Arduino Uno IDE’s serial monitor in the format (time, sensor
EMG1 magnitude, sensor EMG2 magnitude, sensor EMG3 magnitude). The time in
milliseconds is obtained by the millis() function, and the EMG sensor magnitudes are obtained
by the analogRead() function, which reads the Arduino Uno’s analog inputs. Here it is
important to note that the Arduino Uno has a 10-bit, 6-channel analog-to-digital converter
that maps voltages between 0 and 5 V; Therefore, the EMG sensor magnitudes displayed in
the serial monitor are given as integer values ranging from 0 to 1023.

To perform the identification of the person’s hand gestures (as shown in Figure 1),
computational algorithms were developed, and machine learning tools and applications
available in Matlab were applied.

Training Phase

Initially, the training phase was performed. Six different hand gestures (HG1, HG2, HG3, HG4,
HG5, HG6) obtained from a single person were considered. The hand gestures are shown in
Figure 4. The computational algorithm was developed so that the person presses a computer
key and starts the sampling process of the EMG sensor data. This was done to avoid tiredness
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and fatigue during the sampling process. For each hand gesture, 30 samples or repetitions of
the EMG sensor data were collected, divided into training intervals of 5 s, with a sampling rate
of 20 ms. Figure 5 shows the EMG sensor electrodes placed on the person’s arm.

Figure 4. Hand gestures considered in the training phase.
(a) Hand Gesture 1 (HG1). (b) Hand Gesture 2 (HG2). (c) Hand Gesture 3 (HG3).

(d) Hand Gesture 4 (HG4). (e) Hand Gesture 5 (HG5). (f) Hand Gesture 6 (HG6).

i,
3

Source: Authors.

Figure 5. EMG sensor electrodes placed on the person's arm.

Source: Authors.
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To obtain the training phase data, a computational algorithm was developed in Matlab that
runs parallel to the Arduino Uno algorithm and stores the EMG sensor data at a sampling rate
of 20 ms, obtained via serial communication with the Arduino Uno, in a database within
Matlab for later processing and analysis. The objective of this computational algorithm is to

store the data from the three EMG sensors for each hand gesture.

Figure 6 presents the magnitudes of the three EMG sensors for each hand gesture during the
training phase. It is important to highlight that the envelopes of the sensor magnitudes were
obtained in order to smooth the waveforms, since the signals present significant variations
and susceptibility to noise. As 30 samples or repetitions were collected with training intervals
of 5 s, the time ranges from 0 to 150 s. The sampling rate of the EMG sensors is 20 ms, as
previously mentioned.

Figure 6. Magnitudes of the three EMG sensors for each hand gesture during the training phase.
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Source: Authors.

Subsequently, the magnitudes from the three EMG sensors for the 30 samples of each hand
gesture, with a training interval of 5 s, were stored in a table variable in Matlab, as shown in
Figure 7. This table has 180 rows and 2 columns. Since 30 samples were collected for each of
the six hand gestures during the training phase, we have 180 rows. Each row in the column S
is represented by a matrix with 251 rows and 4 columns. The 4 columns represent the time in
milliseconds and the magnitudes of the three EMG sensors for each sample of the hand
gestures, and the 251 rows represent the sampled data, given the sampling rate of 20 ms and
training interval of 5 s. The column O represents the outputs, i.e., for each hand gesture, we
have a corresponding integer value.

Figure 7. Matlab table with the EMG sensor magnitudes during the training phase (HG1: 0 =1, HG2: 0 = 2,
HG3: 0 =3, HG4: 0 = 4, HG5: O = 5, HG6: O = 6).

E ] T ox|

EH 180x2 table
1 2 3
5 0

514 double

1 1
2 |25Txd double 1
3 |25Txd double 1
4 |25Txd double 1
5 |25Txd double 1
6 |25Txd double 1
7 | 251x4 double 1
8 |257xd double 1
9 | 251xd double 1
10 |257x4 double 1

Source: Authors.

Feature Extraction for the EMG Signals

Then, we conclude the training phase and start the feature extraction phase for the EMG
signals, or the magnitudes of the three EMG sensors. These features are a set of parameters
related to the EMG signals (mainly in the time and frequency domains) and will later be used
by machine learning techniques to classify the hand gestures. There are several types of
features, as can be seen in Yanez et al. (2020). These features can be extracted using specific
computational algorithms; however, Matlab provides the Diagnostic Feature Designer
application, which automatically extracts a series of features. The procedure for extract these
features is shown below.
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Initially, the magnitudes of the three EMG sensors, with the 30 samples of the six hand
gestures obtained during the training phase, are imported to the Diagnostic Feature Designer
application. Posteriorly, the features are extracted using the Time-Domain Features
command. Figure 8 shows the set of time-domain features extracted by the application.
Finally, Figure 9 shows the feature values for each EMG sensor. The one-way ANOVA value is
a variance analysis parameter for each feature. The higher this value, the lower the variability
of a feature during the training phase. Therefore, during the application of machine learning
techniques, which will be showed later, it is important to use the features with the highest
values of this parameter.

Figure 8. Set of time-domain features extracted by the Diagnostic Feature Designer application.
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Source: Authors.

Figure 9. Features extracted for each EMG sensor. S_stats are the features obtained for EMG1 sensor,
S_stats_1 for EMG2 sensor, and S_stats_2 for EMG3 sensor.
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Source: Authors.

Observing Figure 9, it can be seen that the best features for each EMG sensor in terms of the
one-way ANOVA value are RMS, Mean, Standard Deviation (Std), and Peak Value. Then, these
features will be exported to Matlab in a table format. Therefore, for each of the 30 samples
of each hand gesture, we have four features (RMS, Mean, Standard Deviation, and Peak
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Value). The work of Yanez et al. (2020) presents a systematic literature review with several
studies and demonstrates that, among the features selected in this work, RMS and Mean are
more commonly used than Standard Deviation and Peak Value for EMG signal identification.
However, the use of Standard Deviation and Peak Value is justifiable since their one-way
ANOVA values are high. It is also import to note that some studies deal with fewer than four
features.

Results and Discussions - Application of Machine Learning Techniques

Finally, we can apply the machine learning techniques with the selected features aiming to
classify the hand gestures obtained in the training phase. For this purpose, we use Matlab's
Classification Learner application. Initially, we must determine the dataset that will be used
by the application. We use the table described in the previous section, which presents all the
selected features. The Classification Learner application implements several machine learning
techniques, such as decision tree, support vector machine, neural networks, among others.
Figure 10 presents some results of hand gesture prediction using the machine learning
techniques Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Neural Network
(NN). The prediction accuracy was high in all cases. Figure 11 presents the confusion matrices
for the three machine learning techniques, considering the 30 samples of the six hand
gestures. It can be observed that the results demonstrate good accuracy, as the predicted
outputs of the hand gestures are very close to the true values. According to the systematic
literature review by Yanez et al. (2020), the most commonly applied machine learning
techniques for EMG signal identification are SVM and NN. The most accurate results were
obtained with SVM, while the least accurate were obtained with NN and KNN. The results with
NN and KNN could be improved by adjusting the models and parameters of these machine
learning techniques available in Matlab’s Classification Learner application.

Figure 10. Results of the hand gestures predictions with the Classification Learner application.
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Source: Authors.
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Figure 11. Confusion matrices for the three machine learning techniques.
(a) SVM.
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Predicted Class

(b) KNN.
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True Class

1 2 3 4 5 6
Predicted Class

(c) NN.

Model 3

True Class

1 2 3 4 5 6
Predicted Class

Source: Authors.

After applying a specific machine learning technique, the Classification Learner application
generates a trained model that is exported to the Matlab workspace and can be used to
perform real-time predictions of the hand gestures readings from the EMG sensors. This
model can be applied in the future for the control of robotic systems.

Here it is very important to highlight that, due to practical limitations, the hand gestures were
obtained from a single person. For greater robustness and generalization of the trained model,
it would be important to collect EMG signals from multiple individuals. However, the focus of
this work was on the development of the hardware and software required for EMG signal
identification. Since good results were obtained with the machine learning model generated
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for a single person, good results can certainly be achieved when data from multiple individuals
are used in the training phase.

It is also important to emphasize that the focus of this work is gesture recognition using EMG
sensors and machine learning; however, we can mention some experimental and
computational options of low-cost robotic systems that can be controlled by the identified
EMG signals and can generate promising future work. We can apply, for example, the Tello
quadcopter, marketed by Ryze Technology (Tello, 2025). This is a small quadcopter developed
for educational and research purposes, featuring a vision-based positioning system with an
integrated camera and infrared sensor, allowing precise navigation in various environments.
Furthermore, it also captures photographs, transmits real-time videos, and has its own
application with pre-programmed functions. The quadcopter and its basic components are
shown in the figures below.

Figure 12. Tello quadcopter.

Source: Tello, (2025).

Figure 13. Basic components of the quadcopter.
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Source: Tello, (2025).

It is an accessible and low-cost robotic system, which can be easily controlled by the identified
EMG signals, since it can be programmed with libraries available in Matlab or Python.

Some results can also be obtained with several robotic systems, such as robotic manipulators
and mobile robots, using simulators like CoppeliaSim, for example (Coppeliasim, 2025).

Conclusion

This work proposes the identification of EMG signals using machine learning techniques and
low-cost technologies. EMG sensors were placed on specific regions of a person’s arm, and
gesture recognition was performed.

The electronic components demonstrated accurate results and good processing capability.
The signal conditioning circuits of the EMG sensors are quite effective in data acquisition, and
the Arduino Uno board showed good processing capacity and ease of programming and
communication. The use of three sensors, although making the process more expensive and
invasive, certainly improves the accuracy of the results. It is important to highlight that low-
cost sensors, despite having signal conditioning circuits, present additional difficulties such as
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lower EMG signal quality and greater susceptibility to noise; therefore, the application of
machine learning techniques is essential for identifying EMG signals from low-cost sensors.
Furthermore, the selected EMG sensor is commercially available in Brazil and several other
countries, is easily accessible, and little explored in the literature.

The communication between the Arduino Uno and Matlab for the training phase was
performed successfully, and the data were stored in Matlab. Matlab's Diagnostic Feature
Designer application proved to be a very useful and practical resource for extracting and
obtaining features from the EMG sensor signals. Finally, Matlab's Classification Learner
application generated a quite accurate machine learning model that can be easily adapted for
robotic systems applications. These Matlab applications are practical, efficient tools, and also
little explored in the literature. Here it is also important to highlight that another advantage
of using Matlab is its specific tools for working with several robotic systems and robotic
simulators, facilitating future applications of the obtained machine learning model.

The first suggestion for future work is to collect hand gestures from multiple individuals so
that the generated machine learning model becomes more robust and generalized.
Furthermore, new training data, new features, and new machine learning techniques can be
applied for comparison with the results already obtained. We also suggest applying the
machine learning model to experimental robotic systems, such as the Tello quadcopter, as
well as simulated robotic systems using softwares such as CoppeliaSim.
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